If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-24y+32=0
a = 3; b = -24; c = +32;
Δ = b2-4ac
Δ = -242-4·3·32
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-8\sqrt{3}}{2*3}=\frac{24-8\sqrt{3}}{6} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+8\sqrt{3}}{2*3}=\frac{24+8\sqrt{3}}{6} $
| -10x=48 | | 90+4x+7+39=180 | | 2/3g=-12 | | 1-4n=-5+9 | | 20-3x=5.03 | | 3-2(x-1)=2(1-x) | | 5y+6+7y=1(6y+2) | | 3x+2(x+1)=4x-5 | | -4r+3-5r=-15 | | -31=2-3p | | 10x-24=3x+32 | | 57+5x-14+42=180 | | 3n+3=1266 | | 3f=-18 | | 4(52x)-5=3(3x+7) | | -2c=2.8 | | -105=3(5x+5) | | 5k+4=84 | | 180=100+2x | | 5y+6+7y=2(6y+3) | | 8=-6y+(y+7) | | -3+7x+3x=-53 | | -8x+4+6x=-2x+5 | | (3x-1)+(2x+6)=35 | | –5w=–7w+2 | | 6b=2b+4 | | -2(14-12x)=4(10-6x) | | 74=r-(-6) | | 5y+6+7y=7(6y+9) | | -3x+2=14 | | -6x+9=45-x | | -18+34=-4(x+8) |